Preventing brain damage after stroke is the primary goal for stroke treatment. Understanding the balance of brain chemicals—which include amino acids like glutamate (salt/ester of glutamic acid)—can help scientists develop new, successful treatments for stroke. 

Stroke is the second leading cause of death worldwide. This dangerous condition occurs when the supply of blood to the brain is disturbed. With ischemic strokes, blood supply is decreased (possibly by a blood clot), and rapidly leads to loss of brain function. Stroke can lead to permanent brain damage, when the neurons in the brain are destroyed.

Neurons are nerve cells which transmit information in our central nervous system, which includes our brain. Neuroprotection is the name for treatments which prevent, or slow, the progression of stroke by preventing the loss of neurons. It is also used to treat other central nervous system disorders, including neurodegenerative diseases, traumatic brain injury, and spinal cord injury.

Dr. Myron Ginsberg published an interesting review on ischemic stroke in Neuropharmacology. Dr. Ginsberg, from the Department of Neurology, University of Miami Miller School of Medicine, in Miami, Florida, covered many experimental neuroprotective treatments, including glutamate antagonism.

The role of glutamate role in treatment for stroke

The amino acid glutamate—sometimes known as or associated with glutamic acid—is one of our brain’s our main excitatory neurotransmitters. Glutamate is involved in cognitive functions such as learning and memory.  But with stroke, excess glutamate can accumulate in the brain. This allows calcium ions to enter the cells. This process is called excitotoxicity, and it causes neuron damage and brain cell death.

Glutamate and other excitatory amino acids interact with receptor-classes, such as N-methyl-D-aspartate (NMDA). Animal studies suggest that treatments which block NMDA receptors could be successful in preventing brain damage after stroke, but only with very early administration. Human trials have not yet been completed.

As further research continues into the role of neurotransmitting amino acids and stroke, it’s possible that a successful neuroprotective treatment using glutamate could be developed.

Sources:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631228/?report=classic