Can the non-essential amino acid glycine become part of a treatment to improve quality of life for cancer patients? An animal study from Australia found some promising results.

Cachexia is a wasting syndrome, characterized by loss of weight, muscle atrophy, and loss of body mass which cannot be reversed by simply consuming more nutrition. This loss of body mass is often caused by cancer, often end-stage or advanced cancer. Cancer cachexia greatly affects quality of life, and can often hasten the patient towards their death. Cachexia is probably responsible for about 20 per cent of cancer deaths.

Cancer cachexia is caused by inflammation, the body’s complex response to harmful stimuli, such as cancer, as the body tries to destroy the cancer cells. Inflammation causes pain, and often swelling and loss of function. New treatments to reduce inflammation, which would also improve cancer therapies, are being researched globally.

D Ham, K Murphy, et al, researchers at the University of Melbourne in Australia, developed an animal trial to see if the amino acid glycine could become part of a safe, non-toxic treatment for cancer-induced muscle wastage.

Glycine is not an essential part of the human diet, as we synthetize it in our bodies from the amino acid serine. It is a neurotransmitter, but has other important effects too. It plays a role in detoxification, and could be an effective anti-inflammatory agent. It is glycine’s anti-inflammatory qualities that the researchers wanted to test.

Glycine protects muscle wastage – may be used for cachexia in cancer patients

Cachexia was induced in mice, which were then injected with glycine, alanine, or citrulline every day for 21 days. After this, selected muscles, tumors, and fat tissues were studied.

The glycine had impressive results. The mice given glycine had much less fat and muscle wastage, and less inflammation. Oxidative stress was also reduced.

The researchers concluded that glycine protected skeletal muscle from wastage and loss of function caused by cancer. They hope that in future, safe, non-toxic glycine treatments to protect against cancer cachexia will be developed.

Sources:

http://www.ncbi.nlm.nih.gov/pubmed/23835111