Are we now able to peek into dangerous areas, like cancer, that would normally kill us? Scientists are having a look at glycine metabolism and its role in cancer growth. Researchers in Boston investigated the mutations cells undergo when healthy cells are mutated into cancer cells, and looked into possible ways of targeting these cancer cells.

Cancer occurs when previously healthy cells mutate, proliferating—replicating–rapidly. In fact, the definition of cancer is a malignant neoplasm, which refers to a group of diseases involving unregulated cell growth. The cancer cells divide and grow uncontrollably, forming malignant tumors which are often fatal. Rapidly proliferating cancer cells can spread to other parts of the body through the bloodstream or lymphatic system.

Very simply put, cancer can spread so rapidly because cancer cells reprogram normal, healthy cells. Mohit Jain, Roland Nilsson, et al, researchers with Harvard Medical School, Boston, USA, wanted to examine this metabolic reprogramming of cancer cells.

They studied 60 well-characterized human cancer cell lines, from nine common tumor types, to characterize cancer cell metabolism. The researchers profiled the cellular consumption and release of over 200 metabolites, the molecules which are necessary for metabolism.

Link between glycine metabolism and cancer cells

In the in vitro experiment, cancer cell lines were cultured, and their metabolites were measured. The researchers found a significant correlation between glycine consumption and cancer cell proliferation.

Glycine is a non-essential amino acid, which can be synthesized by our bodies. In the study, glycine was consumed by rapidly proliferating cells, and released by slowly proliferating cells. This means that glycine is demanded by the cancer cells. The glycine consumption was pronounced in ovarian, colon, and melanoma tumor cells.

The researchers discovered that the glycine biosynthetic pathway was closely linked to cancer cell proliferation, meaning that the cancer was relying on glycine to spread. This increased reliance could make the cancer cells metabolically vulnerable to specific targeting.

The study concluded that this metabolism of glycine could be used to target the rapidly proliferating cancer cells, possibly becoming a new anti-cancer treatment.

Sources:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526189/