Category Archives: Glutamine

Part 1: Eating Insects for Your Daily Amino Acids?

Pull up a chair and have a plate of bugs for breakfast?! Although this is not unrealistic or uncommon in most of the world, entomophagy (eating insects for food) brings a feeling of disgust for many in western societies, and a sourpuss face along with it! But eating insects is common to animals (insectivores), even other insects, as well as humans, and for good reasons.

Eating insects of many kinds brings to light the simple fact that they are full of protein and nutrition, and help sustain life. Vitamins, minerals, monounsaturated and polyunsaturated fats, oleic acid, and amino acids are only part of the full story.

In fact, bugs may wind up being a part of the human diet in the future, as it is currently in many countries, and has been prehistorically commonplace for hominids, hominins (human line), throughout time.

The big questions about eating insects include…

What amino acids are present in bugs and are they available to the human body? Exactly what nutritional content is covered for human requirements by consuming edible insects? Eating insects may be good for you, but do they taste good?

According to my daughter, who went to Peru with my mom and some friends and ate a large white grub that is a common to the area for consumption, it tasted lovely, just like an almond. She said, “It tasted good!” However, she also nearly gagged and spit it out. Why? The texture was “too mushy,” she said. The last thing she was thinking about was the amino acid content of the grub! *smiles*

Eating insects raw, such as her raw grub from Peru, are not always necessary. Most people around the world eat them raw as well as roasted, baked, smoked, fried, boiled in salted water, and dried or sun-dried. Of course, most Americans have heard of chocolate covered ants or grasshoppers as a delicacy dessert (or given as a joke, although is a serious meal in other countries). Each method of preparation makes eating insects a different experience, taste, texture, and can be the difference between it tasting good or wanting to spit it out on the ground from whence it came.

Who wants to eat bugs anyway? Lots of people, especially considering they are as easy to scavenge as they are to grow and raise for food, and is easier than gardening or raising small livestock. It is also cheaper than buying food at the grocery store, although bugs-on-a-stick (or loose) of many varieties can be purchased at local markets in many countries, like is often seen in China or Thailand.

The fact is that many grubs, larvae, grasshoppers, caterpillars, termites, palm weevils, mealworms, and other bugs are packed with nutrition such as potassium, calcium, sodium, magnesium, phosphorous, zinc, manganese, and copper according to the FAO. Eating insects can also supply you with necessary iron and amino acids like lysine, things that vegans and vegetarians are often deficient in.

CONTININUE READING Part 2: Eating Insects for Your Daily Amino Acids?

Reference:

http://link.springer.com/article/10.1007%2FBF00805837

http://www.organicvaluerecovery.com/studies/studies_nutrient_content_of_insects.htm

http://www.fao.org/docrep/018/i3253e/i3253e06.pdf

Glutamine Deprivation May Slow Pancreatic Cancer

Tumor growth in pancreatic cancer patients may be slowed using glutamine. Glutamine is an amino acid, which is one of the building blocks of proteins. Although it is typically considered a non-essential amino acid (meaning the body may make it on its own), glutamine is technically a conditionally essential amino acid. The term “essential” means that it must be gotten through the diet, so this amino acid is—in certain circumstances—acquired via intake of food.

Glutamine, which is the most abundant amino acid in the human body, plays a role in cancer tumor growth; so depriving the cancer cells of glutamine may hold the key to slowing the spread of cancer of the pancreas, a study shows.

Study on pancreatic tumor growth and glutamine

At the Division of Genomic Stability and DNA Repair, Department of Radiation Oncology (part of the Dana-Farber Cancer Institute) in Boston, Massachusetts, a group of researchers and doctors, J Son, CA Lyssiotis, et al., have investigated just how the amino acid glutamine is involved with the KRAS-regulated metabolic pathway, which is part of the cause of tumor growth within the pancreas itself.

The researchers studied the metabolism of cancer cells and glutamine dependencies since, unlike normal cells, the cells within cancer tumors maintain their own type of metabolism. They said that “an increased use of the amino acid glutamine to fuel anabolic processes. Indeed, the spectrum of glutamine-dependent tumors and the mechanisms whereby glutamine supports cancer metabolism remain areas of active investigation.”

Because human pancreatic cells use a non-standard pathway, which identifies ductal adenocarcinoma (PDAC) cells, most cells use “glutamate dehydrogenase (GLUD1) to convert glutamine-derived glutamate.” What this means is that the PDAC cells “are strongly dependent … as glutamine deprivation or genetic inhibition of any enzyme in this pathway leads to [a] series of reactions [that] results in a pronounced suppression of PDAC growth in vitro and in vivo.”

The scientists established that because the glutamine metabolism is reprogrammed and “mediated by oncogenic KRAS, the signature genetic alteration in PDAC [represses] key metabolic enzymes in this pathway.”

With the PDAC pathway and pancreatic cells being dispensable, the glutamine in normal cells then becomes a possible new therapeutic approach in treating pancreatic tumors in humans. Hopefully more will be forthcoming on this new technique in the near future.

Reference:

http://www.ncbi.nlm.nih.gov/pubmed/23535601

Prevent Prostate Cancer with Three Amino Acids?

Three specific amino acids may aid in the prevention of prostate cancer according to a study. The three aminos include methionine, phenylalanine, and tyrosine. During protein synthesis by the body, the amino acids tyrosine, methionine, and phenylalanine are utilized. Restriction of these amino acids depends on glucose metabolism, which when altered aids in cell death of cancer cells within human prostate cancer, and may aid in preventing prostate cancer.

Study linking amino acids and prostate cancer prevention

YM Fu, H Lin, et al., did a study at the Department of Pharmaceutical Sciences at Washington State University said that it is selective amino acid restriction of tyrosine and phenylalanine, plus methionine or glutamine that target mitochondria in cells that are linked to prostate cancer cell death.

Glucose metabolism modulation is tied to the process and “crucial switches connecting metabolism and these signaling molecules to cell survival during amino acid restriction” become target factors preventing prostate cancer, say the researchers.

Second study on prostate cancer and amino acids

Another study by YS Kim from Washington State University showed an identification of molecular targets regarding specific amino acid dependency and how it modulates specific kinds of prostate cancer cells. To find out how the amino acids can prevent prostate cancer, they investigated if restriction of tyrosine, phenylalanine, and methionine could inhibit the growth and metastasis of prostate cancer.

Kim progressed outward in this field of research because of the “underlying the anticancer activity of tyrosine/phenylalanine and methionine restriction. This is especially important research since there still is no satisfactory drug for treatment of androgen-independent, metastatic human prostate cancer.”

Even though further research is needed regarding the amino acids phenylalanine, tyrosine, and methionine for prostate cancer prevention, it has expanded avenues for antimetastatic, anti-invasive, apoptosis-based therapies for the preventing prostate cancer.

Prostate cancer, being one of the major cancers that kill men in the North American continent, is the reason why males should be regularly screened for this deadly disease.

Reference:

http://www.ncbi.nlm.nih.gov/pubmed/20432447

http://prevention.cancer.gov/funding/recently-funded/ca04004/1R01CA101035-01A1

Glutamate and GABA and How They Relate to Seizures

What do Glutamate, GABA, and Glutamine have in common? The former two amino acid have antiseizure properties, but although L-glutamine is an amino acid, it is sometimes confused with glutamate. What is the difference and how do these relate to seizures?

GABA (gamma-aminobutyric acid) is a non-essential amino acid used for aiding sleep and anti-anxiety or seizures.

Glutamate (glutamic acid) is a proteinogenic non-essential amino acid and is an important neurotransmitter and is connected to seizures. I will go into this more later.

Glutamine is a conditionally essential amino acid and also the most abundantly fee amino acid. Glutamine is often used for treating trauma, burns, and for wound healing, but not necessarily for seizures.

Now that we know what glutamine is, we will move on to GABA and glutamate and how they have the role of being antiseizure agents.

GABA and glutamate for treating seizures

According to Dr. J., glutamic acid (glutamate) is the principal neurotransmitter, but that “MSG (monosodium glutamate), whose parent protein is glutamic acid, is used as a flavor enhancer due to it neurostimulating effect on the taste buds. When it reaches the brain, it induces migraines, seizures, the ‘MSG rush’, and lowers the pain threshold (e.g. people with fibromyalgia or other chronic pain syndromes).”

In cases of epilepsy, Dr. J. reports that one woman stopped seizing once on The GARD (Glutamate & Aspartate Restricted Diet) only after she stopped eating cashews, which are known to be a source of glutamate. He says, “It is ‘interesting’ that some of the new anticonvulsants work by blocking glutamate.”

GABA is well known as the amino acid with GABAergic and GABA receptor properties and is consistently correlated with reduced functional responses, which is why it is used to help induce sleep, relaxation, is anti-anxiety and antiseizure in its effects.

In a study called “Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans—A review of multimodal imaging studies” the researchers Niall W. Duncan, Christine Wiebking, and Georg Northoff studied the modalities for multiple imaging of the human brain.

The researchers admit that the neurotransmitters GABA and glutamate are particularly excellent amino acids for such studies because the transmitters exist throughout the brain’s cortex in the inhibition/excitation balance, but they say, “How these transmitters underly functional responses measured with techniques such as fMRI and EEG remains unclear.” Hence, the study.

They report that the literature available showed consistent negative correlations “between GABA concentrations and stimulus-induced activity” as well as “positive correlation between glutamate concentrations and inter-regional activity relationships, both during tasks and rest.”

The scientists concluded that both biochemical and functional imaging of human brains show a combining of information, which does “require a number of key methodological and interpretive issues be addressed before can meet its potential.”

Overall, both GABA and glutamate are correlated with suppression or elimination of seizures in epileptic and other patients, but more research is needed as to just how this works.

References:

http://www.sciencedirect.com/science/article/pii/S014976341400181X

http://dogtorj.com/faqs-links/glutamate-vs-glutamine/

http://aminoacidinformation.com/gaba-stops-prevents-seizures/

Amino Acids Among Anti-Aging Bio-Molecules

Amino acids are among a number of specific types of bio-molecules that help restrict the aging process. Antiaging creams and lotions and supplements are only a few ways to deal with wrinkles and skin issues from a topical advantage, but what about the rest of the body? Anti-aging mechanisms, healing and immunity, skin (our largest organ), and other biological processes require an internal process at the cellular level for really slowing the aging process.

A review by P Dabhade and S Kotwal from the University Department of Biochemistry, RTM Nagpur University, in India wrote a publication titled: Tackling the aging process with bio-molecules: a possible role for caloric restriction, food-derived nutrients, vitamins, amino acids, peptides, and minerals.

The researchers said that “Aging is a multifactorial process leading to general deterioration in many tissues and organs, accompanied by an increased incidence and severity of a wide variety of chronic, incurable, and often fatal diseases” and that these therapies “include potential dietary interventions, adherence to nutrition, hormonal and cell-based therapies, genetic manipulations, and anti-aging supplements or nutrients.” Amino acids are among them.

Amino acids help with anti-aging at the cellular level

True healing comes from within, and the anti-aging process is no different. The body regenerates at the cellular level, so aiding the body in fundamental ways is crucial to keeping the body youthful. This can mean environmental changes we can control, like one’s diet, includes eating nutrient-rich foods (many people also claim their skin was the most obvious change they noticed when they ate a raw vegan diet because the skin hydrates from underneath).

Among the supplements and nutrients that are listed for anti-aging processes includes, vitamins, minerals, peptides, as well as amino acids. Protein foods like meats can provide all 22 amino acids since aminos are the building blocks of protein. Eating whey protein and eggs provide essential amino acids to the body, but extending the lifespan can get more detailed. The researchers who published the review named above focused mainly on these strategies for slowing down the aging process: caloric restriction, good food, and nutritional supplements, among which include amino acids.

Amino acids that are specifically good for anti-aging

Some of the amino acids below serve specific functions in the body:

Taurine helps repair muscle tissue, which tends to wane in the elderly

Creatine is produced by L-arginine and methionine, which come from carnitine, and help produce healthy skin.

L-arginine also helps reduce inflammation and erectile dysfunction (ED), and serves as a metabolism booster.

L-carnitine and carnosine help support cardiovascular health– carnitine helps with skin health, weight management, and energy, plus reduces peripheral vascular disease symptoms and heart angina, while carnosine lowers cholesterol and also reduces the risk of atherosclerosis.

L-glutamine stores sugar as glycogen instead of fat in the body, and is important for skin health.

Cysteine is a powerful detoxifier and required along with glutamine and glycine in order to make glutathione. The Washington Times called the amino acid glutathione an anti-aging machine!

Aging is progressive, irreversible, and a universal human phenomenon. Utilizing amino acids and other supplements may help protect against damage to molecules such as proteins, DNA, lipids, organs, and our cells protects against diseases like heart disease, cancer, Alzheimer’s disease, arthritis, and osteoporosis.

Taking amino acids, among other supplements, and eating a healthy diet aids cellular mechanisms and may help you live longer. Please check with your doctor before taking any supplements.

References:

http://www.ncbi.nlm.nih.gov/pubmed/23451844

http://www.studymode.com/essays/Submission-619316.html

http://aminoacidinformation.com/?s=anti-aging

Amino Acids and Vitamins Improved Health in Elderly

As we age, it is generally believed our immune system deteriorates. It is considered a fact of life. Japanese researchers did a study to investigate the effects of supplementing amino acids and vitamins for both unhealthy and healthier older people for both inpatients and outpatients.

From the article, “Amino acid and vitamin supplementation improved health conditions in elderly participants”, Japanese researchers studied one bedridden inpatient group and one outpatient group.

Daily, a mixture of the amino acids containing leucine (1200 mg/day), glutamine (600 mg/day), and arginine (500 mg/day), plus 11 kinds of vitamins were administrated for 8 weeks. In both groups, general blood biomarkers such as C-reactive protein levels, white blood cell count, and natural killer (NK) cell activity were measured.

The study involved thirteen bedridden inpatients (7 males, 6 females; mean age, 81.8 ± 8 years) and eleven outpatients (7 males, 4 females; mean age, 74 ± 12 years) from the Sansei Hospital (Hyogo Prefecture, Japan).

These same amino acid and vitamins were administered to the inpatients as the outpatients with water twice daily, immediately after dinner and before sleeping.

Results from clinical study on Amino Acids and Vitamins

The researchers found that supplementation of the three amino acids arginine, glutamine, and leucine, and 11 kinds of vitamins had beneficial effects on the health of older people in poor health. The aging process in humans results in a condition called sarcopenia, which involves decreased skeletal muscle mass and function which is associated with metabolic diseases such as obesity and type 2 diabetes.

In this study, immune parameters were also evaluated. Of these, NK cell activity, an index of innate immunity, increased in both outpatients and inpatients. In the immune system, NK cell activity is thought to be one of the important indices for monitoring immunity because innate immunity is the first line of defense against infections. For those inpatients who were administered amino acids, their condition was stable due to increased NK cell activity.

To conclude, this study suggested that “dietary supplementation with the amino acids arginine (500 mg/day), glutamine (600 mg/day), leucine (1200 mg/day), and 11 kinds of vitamins for the elderly in poor health increased NK cell activity, irregardless of the presence of a primary disease and the amount of the daily nutrient intake.”

It was also observed that supplementation with more than 1 g/day of vitamin C enhanced immunity in healthy adults. In addition, vitamin E fostered the immunity for both unhealthy subjects (750 mg/day) and in healthy elderly subjects (800 mg/day).

References:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303480/

http://www.nia.nih.gov/health/publication/biology-aging/immune-system-can-your-immune-system-still-defend-you-you-age

Amino Acids and Gut Health – Glutamine and Other Aminos

There are a number of amino acids that affect the intestines and are necessary for proper functioning. Several amino acids and gut health are connected; in particular, glutamine (which I will cover more in-depth below), arginine, glutamate, glycine, threonine, lysine, as well as sulfur-containing aminos. These amino acids and gut functioning are important because they act as fuels for mucosa in the small intestine, and also for the synthesis of nitric oxide (NO), intestinal proteins, polyamines, and other products that are necessary for health. Amino acids come from protein foods like meats, fish, and eggs, or from taking supplements. 

What this means—according to a study by WW Wang, SY Quiao, and DF Li—is that glutamine and the other amino acids and gut-promoting effects from these aminos are not only “critical for the absorption of nutrients” but also are required for the “gut integrity, growth, and health in animals and humans.”

The researchers show that amino acids and gut health, in particular, indicate both trophic and cytoprotective effects. Trophic means relating to feeding and nutrition, and cytoprotective means it protects the cells from noxious chemicals and other things that would otherwise bother the intestinal tract and cause health problems.

Amino acids and gut health includes glutamine

According to the researchers RR van der Hulst, MF von Meyenfeldt, and PB Soeters, one of the essential amino acids and gut nutrients is glutamine. This non-essential amino acid (meaning your body can produce it, even though you can also get it through protein foods and supplements), is “an important nutrient for rapidly dividing cells such as cells from the immune system and the gut.”

There are a few conditions that can also cause a lack of glutamine, which can, according to the scientists, result in “functional disturbances of the immune system and/or the gut. Glutamine is produced mainly by the muscle tissue. A decrease in muscle mass during nutritional depletion may result in decreased glutamine production capacity. Furthermore during critical illness, there is an increased demand for glutamine probably as a result of an increased utilization by the immune system.”

Additionally, glutamine as one of the amino acids and gut nutritives, is important because it prevents toxins and/or bacteria from migrating from the gut lumen (the hollow part of the intestine) into the circulation of the system. Not having enough glutamine can deteriorate this barrier within the intestine and would, in this case, require supplementation of glutamine.

Lastly, glutamine (or other amino acids and gut health) may need to be supplemented in case of nutritional depletion, parenteral nutrition, or even critical illness.

Reference:

http://www.ncbi.nlm.nih.gov/pubmed/18670730

http://www.ncbi.nlm.nih.gov/pubmed/8974125

Amino Acids – Their Role in Aggressive Brain Cancer

There is an enzyme that causes the breakdown of certain amino acids, which makes brain cancer aggressive. Scientists have discussed their findings in the Nature Medicine journal. These researchers from the German Cancer Research Center (DKFZ) were looking for new kinds of therapies against aggressive brain cancer when they discovered the amino acids hunger is increased in certain forms of brain cancer.

Tumors that grow quickly and aggressively need more energy feeding them than regular (non-aggressive) brain cancer tumors. Tumors also need the right molecular building blocks to build the components of the cells in order to grow. Cancer is now known to feed on sugar (glucose), and some tumors can also catabolize glutamine, which is an amino acid.

Amino acids and role of enzymes in aggressive tumors

Primary glioblastomas are extremely malignant brain tumors. Glioblastomas also have a connection with the two enzymes BCAT1 and IDH (isocitrate dehydrogenase) because these enzymes cooperate together in decomposing branched-chain amino acids.

Amino acids are the building blocks of proteins, and these proteins can act as a food sources that increase the hunger, or aggressiveness, of cancer cells. For the first time, these scientists have been able to show that branched-chain amino acids have a significant role in the aggressive growth of certain malignant tumors.

Some years ago some researchers found gene coding mutations in IDH for a number of types of brain cancers, such as glioblastomas. If they lacked the IDH gene, then they would grow more slowly due to being defective. Radlwimmer, from the German Cancer Research Center, said that, “we can see that overexpression of BCAT1 contributes to the aggressiveness of glioblastoma cells.”

Their team compared the activity of genes from several hundred brain tumors to find out if intact or altered IDH enzymes had characteristics that might explain the aggressive tumor growth. They did, in fact, find a significance difference between two groups studied. The BCAT1 enzyme in a normal brain breaks down branched-chain amino acids, producing ketoglutarate (BCAT1 needs this molecule). So only intact IDH in tumor cells have the BCAT1 enzyme, so Bernhard Radlwimmer says, “The two enzymes seem to form a kind of functional unit in amino acid catabolism.”

Glioblastomas are what makes the brain cancer tumors particularly aggressive, and when the effects of BCAT1 is blocked, the tumor cells lose their capacity to grow or invade the healthy brain tissue. Also, at that point the cells also release less of the amino acid neurotransmitter—glutamate. When someone has brain cancer they often will get epileptic seizures, which are associated with high glutamate amino acid levels.

Because of this association, and how the researchers understand it now, agents are being searched for to target against the enzymes that are responsible for the aggressive tumor growth. BCAT1 expression is also being studied since it may be a marker to help diagnose brain cancer malignancy.

Reference:

http://www.dkfz.de/en/presse/pressemitteilungen/2013/dkfz-pm-13-35-Brain-Cancer-Hunger-for-Amino-Acids-Makes-It-More-Aggressive.php

What Experts Say About Weight Loss and Amino Acids

There are a tremendous amount of resources online and in books that explain the health benefits to those who are trying to lose weight as it pertains to amino acid supplements; but what are some of these expert sites or doctors saying?

Are there really some amino acids that help you with weight loss better than others? Are there scientific studies to validate some of this information?

You can decide for yourself, but below I have compiled a few of these sources for you to examine.

Amino acids – a few sources for weight loss

First of all, you can read our other article called Dr Oz Weight Loss Amino Acids: L-Carnitine, L-Glutamine, and L-Arginine, which covers how these three amino acids can help you lose weight.

According to WebMD authors, Whey Protein, Amino Acids May Boost Fat Loss. This information was reliant on a study that was done and discussed by researcher Robert Coker, PhD, an associate professor of geriatrics at the University of Arkansas for Medical Sciences, in Little Rock.

Dr. Nicholas Perricone (MD, CNS) through the Huffington Post announces that The Top 10 Weight Loss Supplements include Alpha Lipoic Acid (ALA), DMAE (dimethylaminoethanol), Glutamine, Carnitine, Acetyl L-carnitine, Coenzyme Q-10 (also called ubiquinone), Conjugated Linoleic Acid (CLA), Chromium, Gamma Linolenic Acid (GLA), and Maitake medicinal mushroom extract. Outside of weight loss benefits, maitake also helps regulate blood sugar levels, especially in diabetic patients.

In a sister site (but completely unrelated to Amino Acid Information) of Amino Acid Studies, three main amino acids are found—based on studies—that can help with weight loss. In their article titled Amino acids and their significance for fat burning, arginine, glutamine, and methionine are three aminos that can boost your efforts to lose weight.

These are but a few of the excellent sources that exist that are based on either scientific studies or that have experts telling us that these amino acid supplements can help you lose weight. Weight loss should always be part of a balanced diet and by eating healthy food and proper exercise, rather than focusing on fad diets or by popping pills.

It is also important to note that all 22 amino acids, whether they are essential amino acids or non-essential amino acids, are available through protein foods like meats (beef, chicken, lamb, pork, etc.), eggs, and fish.

References:

http://aminoacidinformation.com/dr-oz-weight-loss-amino-acids-l-carnitine-l-glutamine-l-arginine/

http://www.webmd.com/diet/news/20121212/whey-amino-acids-fat-loss

http://www.huffingtonpost.com/dr-nicholas-perricone/the-top-10-weight-loss-su_b_227618.html

http://www.aminoacid-studies.com/areas-of-use/fat-burning.html

Heart Bypass Surgery and L-glutamine Perioperative Care

A study investigated the protective effects of L-glutamine in coronary bypass surgery, with positive results. 

Ischemic heart disease, often known also as myocardial ischemia, is characterized by reduced blood supply to the heart muscle. The heart becomes weaker, unable to pump blood effectively round the body. This is usually caused by coronary artery disease, or atherosclerosis, which is hardening of the arteries.

Ischemic heart disease is the most common cause of death worldwide. However, it can often be prevented. Risk factors include obesity, smoking, high cholesterol, and high blood pressure, which can all be addressed with lifestyle changes.

However, the risks of developing heart disease also depend on age, genetic factors, and diabetes.

Coronary artery bypass surgery  is one of the treatments for ischemic heart disease. A Cardiopulmonary bypass  is often a part of this heart surgery. The cardiopulmonary bypass is a technique which temporarily takes over the functioning of the heart, because it’s extremely difficult to operate on a beating heart.

Researchers W Lomivorotov, S Efremov, et al, wanted to see if the amino acid L-glutamine had cardioprotective effects during a cardiopulmonary bypass. They published their findings in the Russian journal Anesteziologiia i Reanimatologiia, or Anesthesiology and Intensive Care.

L-glutamine to be part of perioperative care for heart surgery?

Patients were divided into the study group and the control group. The study group was administered L-glutamine, specifically a 20% solution N(2)-L-alanine-L-glutamine. The control group received a placebo solution.

The solutions were given during the perioperative period, which is the entire surgical procedure including admission, anesthesia, surgery, and recovery. The goal of perioperative care is to provide better conditions for patients before, during, and after their surgery.

In this study, the L-glutamine solution provided an excellent perioperative addition for patients with ischemic heart disease up to 24 hours after surgery. The L-glutamine solution had a significant cardioprotecive effect, and could become a standard part of treatment for these ischemic heart disease patients if they need to have heart surgery.

Sources:

http://www.ncbi.nlm.nih.gov/pubmed/22834281